Aqueous solution synthesis of SnO nanostructures with tuned optical absorption behavior and photoelectrochemical properties through morphological evolution.

نویسندگان

  • Ken Sakaushi
  • Yuya Oaki
  • Hiroaki Uchiyama
  • Eiji Hosono
  • Haoshen Zhou
  • Hiroaki Imai
چکیده

We have studied the aqueous solution synthesis of divalent tin oxide (SnO) nanostructures, changes in their optical absorption behavior, and their photoelectrochemical properties. A number of SnO nanostructures including sheets and wires, and their composite morphologies were obtained in aqueous solution containing urea at low temperatures. Parallel control of both oxidation state and morphology was achieved through the urea-mediated solution process. Nanoscale morphological variation facilitated changes in optical absorption behavior and the generation of a photocurrent. As for the nanostructured SnO, the absorption of visible light decreased and absorption in UV region increased. In contrast, bulk black SnO crystals showed strong absorption over the entire range of UV to visible light. A photocurrent was generated from the SnO nanostructures with irradiation of UV and visible light.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of SnO2 nanoparticles by Co-Precipitation method

Tin oxide (SnO2)nanoparticles were synthesized by co-precipitation method and the synthesized nanoparticles were annealed at different temperatures for characterization. The powders were investigated with X-ray diffraction, scanning electron microscopy and optical spectroscopy. The structural characterization was carried out by X-ray diffraction which confirms the crystalline nature ...

متن کامل

Synthesis and Characterization of Indoline-based organic sensitizers for photoelectrochemical cells

In this paper we designed and prepared three free-metal organic days Dye 1, Dye 2 and Dye 3 based on indoline with n-phenly substituents iminodibenzyl as the electron donor group. We used cyanoacrylic acid substituent as the electron acceptor anchoring group in organic dyes. The proposed dyes were prepared from iminodibenzyl as the starting material by standard reactions and characterized by di...

متن کامل

Analyzing the Optical Properties and Peak Behavior Due to Plasmon Resonance of Silver Cubic-Shape Nanostructures by Means of Discrete Dipole Approximation

In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, waveleng...

متن کامل

Lithium Disilicate (Li2Si2O5): Mild Condition Hydrothermal Synthesis, Characterization and Optical Properties

Lithium disilicate nano-powders were synthesized via a mild condition hydrothermal reaction at 180 ºC for 48 and 72 h with a non stoichiometric1:2 Li:Si molar ratio in NaOH aqueous solution using Li2CO3 and SiO2.H2O as raw materials. The synthesized materials were characterized by powder X-ray diffraction (PXRD) technique and Fourier transform infrared (FTIR) spectroscopy. The XRD data showed t...

متن کامل

Synthesis, Characterization and Adsorption Capability of CdO Microstructure for Congo Red from Aqueous Solution

Cadmium oxide rhombus-shaped nanostructure was synthesized using hydrothermal process followed by heating treatment. Clearly, X-ray diffraction pattern demonstrated the formation of CdO crystalline phase. Scanning electron microscopy (SEM) showed that the obtained rhombus-like structure is composed of nanoparticles with the average size of 29 nm. In addition, we evaluated adsorption of org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 2 11  شماره 

صفحات  -

تاریخ انتشار 2010